
P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 25 of 37 Ceebot Directed Study

Overall Task (Ceebot Task 24.2)
 This exercise starts with an enemy robot stealing the BlackBox and flying off to a secret

area of the planet.
 The BlackBox (which is

actually an orange-
brown colour!) holds
important expedition
details and must be
returned.

 Your task is to devise a
program that will allow
you to control your
winged robot

 Then you must fly your
robot, follow the enemy,
retrieve the BlackBox
and return it to the
SpaceShip.

 You start with a ‘cockpit’ view from your Winged Grabber robot .. you can alter this if you
prefer, by clicking the camera icon.

Week 8

Project: Robot Chase

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 26 of 37 Based on the original work by Brian Ward

Basic Program: Follow the Enemy
The basic program to design will
allow you to use your keyboard to
control your flying robot.
You will need to be able to
continually do the following:

 Fly the robot higher
 Fly the robot lower
 Turn left
 Turn right

by pressing different keys on the
keyboard.

The keypushed() instruction

 It is no good using the dialog() instruction for this project because it will keep stopping
the action.

 If you have not met the keypushed() instruction before, you need to know about it
now. It simply allows you to detect the pressing of a key and then to do something
quickly without stopping the action.

 Here is an example: detecting a left arrow key press (called a Virtual Key)

 if (keypushed(VK_LEFT)) // if left arrow key is pushed
 {
 turn(2); // turn slightly left
 }

 You can also use it to detect ordinary keys, for example:
 if (keypushed("a")) // if the a key is pushed

Program Help
There are various ways to tackle this project, but if you are stuck, here are a few
suggestions.
First .. plan your program by designing an algorithm for it.

 I hope you can see that you will need an infinite loop
 Inside the loop you will need to drive the robot forward at high speed. You can try

using move(..) but it is better to use the drive(..) instruction.
drive(1,0); // moves forward at top speed

 You should also pause very briefly (0.01 seconds is about right) to allow the robot time
to move a bit before anything else happens.

 Then inside the loop you should also detect appropriate keypushes (see above) and
use these to control the robots 4 main movements (up, down, left, right)

 Hint: you need to use the jet(..) instruction.

If you can put all this together, you should now be able to fly and follow the Enemy!

Additional thoughts

 It is a good idea to start your program by displaying some instructions to remind the
user what the controls do.

 Put all this in a separate function that is called from your main program.

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 27 of 37 Ceebot Directed Study

Extension Work 1:
Returning the BlackBox to the SpaceShip

1. Slowing Down
 If you follow the enemy robot, you

will eventually see it drop the
BlackBox in a secret location and
then fly off.

 You must land your robot to pick up
the box, but at the moment you are
flying forward at top speed so you
will probably just crash!

 You must provide a way of slowing
down or stopping the robot, before
you try to land.

 Hint: you could use a variable for the
speed setting in the drive(..) instruction.

2. Picking Up and Returning the BlackBox
 Now expand your control panel by

adding the ability to grab an item and
to drop an item using keyboard
control again

 Then finish the exercise by actually
picking up the dropped BlackBox and
taking it to the SpaceShip and then
dropping it there.

 Where is the SpaceShip? You can
look at the minimap at the bottom
right of the screen to find it.

Extension Work 2: AutoPilot
There is another way to tackle this exercise.
You can provide an autopilot program that uses the
robot’s radar to follow the enemy robot.
Design another program, with at least 3 functions:
1. TakeOff()

 The robot should ascend to a height of about 10
metres

2. Follow()
 Using the radar, follow the enemy until it drops

the BlackBox.
 Note: the BlackBox will not be detected while it

is being carried .. the enemy robot will mask it.
So radar(BlackBox) will return a null value
until the box is dropped.

3. ReturnHome()
 The robot should descend and pick up the BlackBox.
 Then use the radar again to find the SpaceShip, go there and drop the box.

Start the program by giving the user a choice of a manual control or autopilot
You can get more help using [F1]

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 28 of 37 Based on the original work by Brian Ward

Extension Work 3 : Finish off the Enemy!
 The Enemy robot flew off after stealing and dumping

the BlackBox. You have (hopefully) been able to
retrieve the box but you still have this pesky robot
hanging around waiting to do more mischief!

 Notice that there is a powerful WingedShooter
robot near the SpaceShip. You can select its icon at
the top of the screen.

Your final task is to program this robot to
automatically seek and destroy the enemy
WingedGrabber robot.

Hints

 You can modify some of the code that you have already written
 The enemy robot is hovering so you will need to be able to reach the same height

before firing (remember to use the z coordinate here)
 Note that radar("Enemy") can be used instead of radar(WingedGrabber) .. why

could the normal method be a problem?
 Note also that there is a TargetBot on a nearby hill .. so you can practice your

program using this instead of waiting for the other program to finish.

Project Deliverables
In your log book, you should include:

 Algorithms
 All your commented Source Code
 Test Plan
 Screenshots
 Everything should be clearly labelled and contain a report summarising how you

tackled the project and any problems along the way.

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 29 of 37 Ceebot Directed Study

Appendix A: Examples of Important Ceebot Instructions

1. Ceebot Specific
 move (20); .. move 20 metres
 turn(180); .. turn 180 degrees anticlockwise
 wait(1.5); .. wait for 1.5 seconds
 fire(2.5); .. fire cannon for 2.5 seconds
 aim(10); .. aim cannon 10 degrees up (use values from -20 to +20)
 grab(); .. grab the item directly in front
 drop(); .. drop the item being carried
 pendown(); .. put the pen against the floor ready for drawing
 penup(); .. lift the pen to stop drawing
 red(); .. select a red pen for drawing (various colours available)
 drive(1, 0); .. drive forward at full speed
 jet(1); .. fly upwards at full speed (use values -1 to +1)

2. Input and Output
 name = dialog("Enter Name"); .. show dialog to input name and store it in name variable
 message("I am " + name); .. output a message with text joined to a name variable
 num = strval (dialog("Enter number")); .. enter string and convert to its number value
 item = radar(WheeledShooter); .. get details of the nearest WheeledShooter robot
 keypushed(VK_UP); .. detects pressing of a key (e.g the UP arrow key) .. used with if()

3. Variables
 int count; .. define a variable called count to store an integer number
 float num; .. define a variable called num to store a float (decimal) number
 string name; .. define a variable called name to store a string (text or words)
 object item; .. define a variable called item to store an object’s details
 point here; .. define a variable called here to store a position (x and y)

4. Assignments to Variables (must be defined first)
 count = 0; .. put 0 into the count variable (previously defined as int)
 num = 5.67; .. put 5.67 into the num variable (previously defined as float)
 name = "Fred Bloggs"; .. put these 11 characters in the name variable (defined as string)
 here = this.position; .. store current position of robot in the here variable (a point)
 angle = direction(item.position); .. find angle of item from you (after using radar)
 dist = distance (item.position, this.position); .. find distance from item to your position.

5. Calculations
 count ++; .. add 1 to the value of the count variable
 count --; .. subtract 1 from the value of the count variable
 count = count + 3;.. add 3 to value of the count variable (or use count += 3;)
 count = count - 6; .. subtract 6 from the count variable (or use count -= 6;)
 av = (num1 + num2 + num3 + num4) / 4; .. work our average of 4 numbers
 tax = bill * 17.5 / 100; .. work out 17.5 percent tax on your bill

6. Loops (iteration)
 a. The while loop int count = 0; // initialise a loop counter to zero

while (count < 10) // continue while loop counter is less than 10
{
 message (“The count is " + count); // repeated message
 count ++; // keep loop going by adding 1 to counter
}

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 30 of 37 Based on the original work by Brian Ward

 b. The for loop

 c. The do while loop

7. Selection
 a. The if statement

 b. The if else statement

// initialise loop counter; continue while count less than 10 ; add 1 at end of loop

for (int count = 0; count < 10; count ++)
{
 message (“The count is " + count); // repeated message (10 times)
}

int count = 0; // initialise a loop counter to zero

do
{
 count ++; // keep loop going by adding 1 to loop counter

message (“The count is " + count); // repeated message
}
while (count < 10); // continue while loop counter is less than 10

int count = 0;

while (count < 10)
{
 if (count == 4) // if count is equal to 4
 {
 message (“We are half way");
 }

 count ++;
}

 if (count >= 4) // if count is greater or equal to 4
 {
 message (“We have reached half way");
 }
 else
 {
 message ("We are NOT half way yet");
 }

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 31 of 37 Ceebot Directed Study

 c. The switch statement

8. Conditions
 (a == b) .. a is equal to b ?
 (a > b) .. a is greater than b ?
 (a < b) .. a is less than b ?
 (a >= b) .. a is greater or equal to b ?
 (a <= b) .. a is less than or equal to b ?
 (a != b) .. a is NOT equal to b ?

 (a == b || a == c) .. a is equal to b OR a is equal to c ?
 (a == b || a == c || a == d) .. a is equal to b OR a is equal to c OR a is equal to d ?

 (a == b && a == c) .. a is equal to b AND a is equal to c ?
 (a <= 100 && a >= 0) .. a is less than or equal to 100 AND a is greater or equal to 0 ?

9. Functions

 // this defines a function called myFunc which has no parameters and returns nothing (void)
 // to use it, you 'call' it using its name : i.e. myFunc();

10. Functions with parameters

// this defines a function called Tax which has 1 parameter and returns a float value
// to use it, you can 'call' it like this: vat = Tax(Bill);
// this passes the Bill value into the function and picks up the returned tax value from it.
([F2] key for more)

 switch(count) // use count value to switch to various cases below:
 {
 case 1: // i.e. if count value = 1
 message (“We are just starting"); break;
 case 2: case 3: case 4:
 message (“We are on our way"); break;
 case 4:
 message (“We are half way"); break;
 default:
 // do nothing for any other values
 }

 void object::myFunc()
 {
 message ("I am now inside the myFunc function");
 }

 float object::Tax(float amount)
 {
 float taxAmount; // local variable

taxAmount = amount * 17.5/100;
return taxAmount;

 }

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 32 of 37 Based on the original work by Brian Ward

Appendix B: The Basics of C# (Console)

1. Input and Output
 name = Console.ReadLine(); .. store input in a name variable (defined as
string)
 Console.WriteLine("I am " + name); .. output a message with text joined to a name
variable
 num1 = Convert.ToDouble (Console.ReadLine()); .. enter string and convert to a
double
 num2 = Convert.ToInt32 (Console.ReadLine()); .. enter string and convert to an integer

2. Variables
 int count; .. define a variable called count to store an integer number
 double num; .. define a variable called num to store a double (decimal) number
 string name; .. define a variable called name to store a string (text or words)

3. Assignments to Variables (must be defined first)
 count = 0; .. put 0 into the count variable (previously defined as int)
 num = 5.67; .. put 5.67 into the num variable (previously defined as double)
 name = "Fred Bloggs"; .. put these 11 characters in the name variable (defined as string)

4. Calculations
 count ++; .. add 1 to the value of the count variable
 count --; .. subtract 1 from the value of the count variable
 count = count + 3; .. add 3 to value of the count variable (or use count += 3;)
 count = count - 6; .. subtract 6 from the count variable (or use count -= 6;)
 av = (num1 + num2 + num3 + num4) / 4; .. work our average of 4 numbers
 tax = bill * 17.5 / 100; .. work out 17.5 percent tax on your bill

5. Loops (iteration)
 a. The while loop

an infinite loop

b. The for loop

int count = 0; // initialise a loop counter to zero

while (count < 10) // continue while loop counter is less than 10
{
 Console.WriteLIne (“The count is " + count); // repeated
 count ++; // keep loop going by adding 1 to counter
}

// initialise loop counter; continue while count less than 10 ; add 1 at end of loop

for (int count = 0; count < 10; count ++)
{
 Console.WriteLine (“The count is " + count); // repeated 10 times
}

while (true) // continue the while loop forever
{
 Console.WriteLIne ("Yippeeee!!"); // repeated forever
}

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 33 of 37 Ceebot Directed Study

c. The do while loop

6. Selection
 a. The if statement

 b. The if else statement

c. The switch statement

7. Conditions
 (a == b) .. a is equal to b ?
 (a > b) .. a is greater than b ?
 (a < b) .. a is less than b ?
 (a >= b) .. a is greater or equal to b ?
 (a <= b) .. a is less than or equal to b ?
 (a != b) .. a is NOT equal to b ?

8. Multiple Conditions

int count = 0; // initialise a loop counter to zero

do
{

count ++; // keep loop going by adding 1 to loop counter
Console.WriteLine (“The count is " + count); // repeated message

}
while (count < 10); // continue while loop counter is less than 10

 if (count == 4) // if count is equal to 4
 {
 Console.WriteLine (“We are half way");
 }

 if (count >= 4) // if count is greater or equal to 4
 {
 Console.WriteLine (“We have reached half way");
 }
 else
 {
 Console.WriteLine ("We are NOT half way yet");
 }

 switch(count) // use count value to switch to various cases below:
 {
 case 1: // i.e. if count value = 1
 Console.WriteLine (“We are just starting"); break;
 case 2: case 3: case 4:
 Console.WriteLine (“We are on our way"); break;
 case 4:
 Console.WriteLine (“We are half way"); break;
 default:
 // do nothing for any other values break;
 }

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 34 of 37 Based on the original work by Brian Ward

 (a == b || a == c) .. a is equal to b OR a is equal to c ?
 (a == b || a == c || a == d) .. a is equal to b OR a is equal to c OR a is equal to d ?

 (a == b && a == c) .. a is equal to b AND a is equal to c ?
 (a <= 100 && a >= 0) .. a is less than or equal to 100 AND a is greater or equal to 0 ?

9. Classes, Objects and Methods

 // this defines a simple class called Meal which has one variable, one method, one
constructor

10. Methods with parameters

// this defines the method setTax() which has 1 parameter (amount) and returns a double
value
// this method will be defined inside a class e.g the Meal class above
// to use it, you can 'call' it like this:

vat = myMeal.setTax(Bill); // assume myMeal is the object created from
Meal

// this passes the value of Bill into the method and picks up the returned tax value
from it.

class Meal // define a class called Meal
{
 private string food; // the class has one class variable (attribute or field)

public static void Main() // program starts executing here
{
 Meal myMeal = new Meal(); // create a new myMeal object

 myMeal.getFood(); // call the object’s getFood() method
 }

 public Meal() // this is the Meal class constructor
 {
 food = "Fish and Chips"; // this sets the default food
 }

 public void getFood() // define a method getFood()which returns nothing
(void)
 {
 Console.WriteLine("What would you like to eat?");
 food = Console.ReadLine(); // input into the class variable food
 }
}

 public double setTax(double amount)
 {
 double taxAmount; // local variable

taxAmount = amount * 17.5/100;
return taxAmount;

 }

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 35 of 37 Ceebot Directed Study

Assessment of CO452 Programming Concepts

1. This module is assessed by coursework. There are 3 parts to this coursework (Part

A, B and C). There are study packs for each of the 3 parts. The study packs

contain both class exercises (for practice in the sessions) and independent

exercises relating to the programming concept being taught that week. There is a

project week in Part B that includes a series of tasks that link with each other.

2. Class exercises will not be assessed. These are exercises to help you

understand the concepts introduced each week and prepare you for the

independent exercises. It is a good idea to work together in pairs or groups on the

class exercises.

3. Independent studies (and project tasks in Part B) will be assessed. The code

for these tasks will be assessed on their efficiency, syntax, correct use of concept,

and whether the code fulfils the requirements of the task. Some tasks may also

require additional documentation such as test plans and algorithms. Please include

screenshots of your code running and comments where relevant. You must

complete these independent exercises on your own outside of the session.

4. Create a logbook (for example: an MS Word document) to document your code.

The logbook should contain your designs, algorithms, test plans, source code and

results of your work. This must be submitted electronically through the

designated TurnItIn submission point (your tutor will show you). If there is a

technical problem and you cannot submit through TurnItIn, please email

Debra.Harper@bucks.ac.uk explaining the issue, and attaching your

logbook. Alternatively speak to someone from the DMM administration office

(E4.08).

5. Your mark for this module will be based on your grades for each of the parts (A, B,

C). Below shows the weighting of each of the parts:

Part A: 30% of module mark

 Week 1 (4 independent exercises); Week 2 (4 ind. ex.); Week 3 (4 ind. ex.)

Part B: 40% of module mark

 Week 5 (TBD), Week 6 (TBD), Week 7 (TBD), Week 8 (Project)

Part C: 30% of module mark

 Week 10 (TBD), Week 11 (TBD), Week 12 (TBD)

Grade related criteria for Programming - CO452

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 36 of 37 Based on the original work by Brian Ward

A

Where the student has demonstrated clear evidence of an excellent understanding
of the theories and principles together with a high degree of analytical accuracy,
good design skills, implementing fully tested solutions that show reliability,
maintainability, readability and minimal complexity and correct form of presentation
skills.
To acquire the knowledge and skills to demonstrate the above the student will
normally be expected to attend the seminar sessions and attempt at least 85% of
independent studies.

B

Where the student has demonstrated clear evidence of a good understanding of the
theories and principles together with a good analytical ability, good design skills,
implementing solutions that show reliability, maintainability, readability and minimal
complexity and correct form of presentation skills.
To acquire the knowledge and skills to demonstrate the above the student will
normally be expected to attend the seminar sessions and attempt at least 75% the
independent studies.

C

Where the student has demonstrated a reasonable understanding of the theories
and principles together with a reasonable analytical ability, design skills,
implementing solutions that appreciate the need for reliability, maintainability,
readability and minimal complexity and reasonable presentation skills.
To acquire the knowledge and skills to demonstrate the above the student will
normally be expected to attend the seminar session and attempt at least 66% of the
independent studies.

D

Where the student has demonstrated an understanding of the theories and
principles of analysis, design, implementation and presentation skills.
To acquire the knowledge and skills to demonstrate the above the student will
normally be expected to attend the seminar session and attempt at least 50% of the
independent studies.

E

Where the student has made a genuine attempt to acquire the knowledge and skills
but requires further application and study to demonstrate an understanding of the
theories and principles of analysis, design, implementation and presentation skills.
In order to demonstrate a genuine attempt the student will normally be expected to
attend the seminar sessions and attempt at least 40% of the independent studies.

F

Where the student has clearly not acquired sufficient knowledge and skills and not
attempted or coped with the directed study with any degree of competence regarding
theories, principles, analysis, design, implementation and presentation skills
or
where the student has NOT attended for assessment
or
where the student has copied work from an alternative source.

Module Name and code Programming Concepts CO452

Staff: Kevin Maher, Carlo Lusuardi, Richard Jones, Nick Day, Based on original work by Brian Ward

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 37 of 37 Ceebot Directed Study

Learning Outcomes:
 Analyse a simple requirement in a structured manner
 Design, document, implement and test reliable, maintainable programs as solutions to simple problems
 Use structured techniques of design and implementation and good documentation practice.
 Use software development tools.

WK LECTURE/TUTORIAL PRACTICAL

1 INTRO to Ceebot, VARIABLES, INPUT and OUTPUT Ceebot Chapters 1-6

2 ITERATION Ceebot Chapters 7-8; 12-15

3 SELECTION Ceebot Chapters 9-10

4 WORKSHOP for CW 1 Part A submission next week

5 FUNCTIONS Ceebot Chapters 18-19

6 PARAMETERS Ceebot Chapters 20-21

7 ARRAYS Ceebot Chapters 22-23

8 Ceebot PROJECT Ceebot Chapter 24

9 WORKSHOP for CW 1 Part B submission next week

10 C# 1 Input and Output C# Intro Directed Study Pack: Unit 1

11 C# 2 Sequence, Selection, Iteration C# Intro Directed Study Pack: Unit 2

12 C# 3 Classes, Objects and Methods C# Intro Directed Study Pack: Unit 3

 Christmas Break

13 WORKSHOP for CW 1 Part C submission next week

14

Course Texts:
Comprehensive Course Notes are provided

 Bradley & Millspaugh, Programming in C#, 2010, pub: McGraw Hill
 Deitel & Deitel, Visual C# 2010 How to Program, 2011, pub: Pearson

